Search results
Results From The WOW.Com Content Network
In computer science (specifically computational complexity theory), the worst-case complexity measures the resources (e.g. running time, memory) that an algorithm requires given an input of arbitrary size (commonly denoted as n in asymptotic notation). It gives an upper bound on the resources required by the algorithm.
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
It is a term commonly encountered in computer science research as a result of widespread use of big-O notation. More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require Ω(f(n)) of that resource, and the algorithm has been proven to use only O(f(n)).
Asymptotic analysis is a key tool for exploring the ordinary and partial differential equations which arise in the mathematical modelling of real-world phenomena. [3] An illustrative example is the derivation of the boundary layer equations from the full Navier-Stokes equations governing fluid flow.
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
With respect to computational resources, asymptotic time complexity and asymptotic space complexity are commonly estimated. Other asymptotically estimated behavior include circuit complexity and various measures of parallel computation , such as the number of (parallel) processors.
In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. Their solutions lend themselves to asymptotic analysis ( perturbation theory ), which is widely used in modern applied mathematics , mechanics and physics .
It is called an asymptotic cone, because the distance to the cone of a point of the surface tends to zero when the point on the surface tends to infinity. See also [ edit ]