When.com Web Search

  1. Ad

    related to: vertex form to standard pdf graph tool

Search results

  1. Results From The WOW.Com Content Network
  2. Graph-tool - Wikipedia

    en.wikipedia.org/wiki/Graph-tool

    Graph-tool can be used to work with very large graphs [clarification needed] in a variety of contexts, including simulation of cellular tissue, [2] data mining, [3] [4] analysis of social networks, [5] [6] analysis of P2P systems, [7] large-scale modeling of agent-based systems, [8] study of academic Genealogy trees, [9] theoretical assessment ...

  3. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

  4. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is ⁠ n(n − 1) / 2 ⁠. The edges of an undirected simple graph permitting loops G {\displaystyle G} induce a symmetric homogeneous relation ∼ {\displaystyle \sim } on the vertices of G {\displaystyle G} that is called ...

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries ...

  8. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    The basic operations provided by a graph data structure G usually include: [1] adjacent(G, x, y): tests whether there is an edge from the vertex x to the vertex y; neighbors(G, x): lists all vertices y such that there is an edge from the vertex x to the vertex y; add_vertex(G, x): adds the vertex x, if it is not there;

  9. Graph canonization - Wikipedia

    en.wikipedia.org/wiki/Graph_canonization

    The vertex set of an n-vertex graph may be identified with the integers from 1 to n, and using such an identification a canonical form of a graph may also be described as a permutation of its vertices. Canonical forms of a graph are also called canonical labelings, [4] and graph canonization is also sometimes known as graph canonicalization.