When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  3. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  4. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    By Stokes' theorem, the flux of curl or vorticity vectors through a surface S is equal to the circulation around its perimeter, [4] = = = Here, the closed integration path ∂S is the boundary or perimeter of an open surface S , whose infinitesimal element normal d S = n dS is oriented according to the right-hand rule .

  5. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  6. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    The right hand grip rule can also be used to determine the signs. Second, there are infinitely many possible surfaces S that have the curve C as their border. (Imagine a soap film on a wire loop, which can be deformed by blowing on the film).

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    A tensor form of a vector integral theorem may be obtained by replacing the vector (or one of them) by a tensor, provided that the vector is first made to appear only as the right-most vector of each integrand. For example, Stokes' theorem becomes

  8. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    The reason for defining the vector derivative and integral as above is that they allow a strong generalization of Stokes' theorem. Let L ( A ; x ) {\displaystyle {\mathsf {L}}(A;x)} be a multivector-valued function of r {\displaystyle r} -grade input A {\displaystyle A} and general position x {\displaystyle x} , linear in its first argument.

  9. Orientation (vector space) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(vector_space)

    However, there are situations where it is desirable to give different orientations to different points. For example, consider the fundamental theorem of calculus as an instance of Stokes' theorem. A closed interval [a, b] is a one-dimensional manifold with boundary, and its boundary is the set {a, b}.