Search results
Results From The WOW.Com Content Network
For any integer n, n ≡ 1 (mod 2) if and only if 3n + 1 ≡ 4 (mod 6). Equivalently, n − 1 / 3 ≡ 1 (mod 2) if and only if n ≡ 4 (mod 6). Conjecturally, this inverse relation forms a tree except for the 1–2–4 loop (the inverse of the 4–2–1 loop of the unaltered function f defined in the Statement of the problem section of ...
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒Erdős–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
In algebra, the 3x + 1 semigroup is a special subsemigroup of the multiplicative semigroup of all positive rational numbers. [1] The elements of a generating set of this semigroup are related to the sequence of numbers involved in the still open Collatz conjecture or the "3 x + 1 problem".
However, 1 is a square mod 3 (equal to the square of both 1 and 2 mod 3), so there can be no similar identity for all values of that are congruent to 1 mod 3. More generally, as 1 is a square mod n {\displaystyle n} for all n > 1 {\displaystyle n>1} , there can be no complete covering system of modular identities for all n {\displaystyle n ...
The 1-factorization conjecture that if is odd or even and , respectively, then a -regular graph with vertices is 1-factorable. The perfect 1-factorization conjecture that every complete graph on an even number of vertices admits a perfect 1-factorization.
K n has n(n – 1)/2 edges (a triangular number), and is a regular graph of degree n – 1. All complete graphs are their own maximal cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices. The complement graph of a complete graph is an empty graph.
Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013. [2] [3] [4]
To make use of the rules of inference in the above table we let be the proposition "If it rains today", be "We will not go on a canoe today" and let be "We will go on a canoe trip tomorrow". Then this argument is of the form: