When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Self-play - Wikipedia

    en.wikipedia.org/wiki/Self-play

    In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents.

  3. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  4. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    [33] [34] Other methods tried to incorporate the feedback through more direct training—based on maximizing the reward without the use of reinforcement learning—but conceded that an RLHF-based approach would likely perform better due to the online sample generation used in RLHF during updates as well as the aforementioned KL regularization ...

  5. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    With zero knowledge built in, the network learned to play the game at an intermediate level by self-play and TD(). Seminal textbooks by Sutton and Barto on reinforcement learning, [6] Bertsekas and Tsitiklis on neuro-dynamic programming, [7] and others [8] advanced knowledge and interest in the field.

  6. Weak supervision - Wikipedia

    en.wikipedia.org/wiki/Weak_supervision

    Self-training is a wrapper method for semi-supervised learning. [14] First a supervised learning algorithm is trained based on the labeled data only. This classifier is then applied to the unlabeled data to generate more labeled examples as input for the supervised learning algorithm.

  7. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...

  8. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.

  9. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [ 1 ] [ 2 ] [ 3 ] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.