When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Zernike polynomials3.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Zernike_polynomials3.pdf

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  3. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field F q ( x ) {\displaystyle \mathbf {F} _{q}(x)} , since the Frobenius endomorphism sends x ↦ x p {\displaystyle x\mapsto x^{p}} and therefore is not surjective.

  4. Algebraic function field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_function_field

    The algebraic function fields over k form a category; the morphisms from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.

  5. Mason–Stothers theorem - Wikipedia

    en.wikipedia.org/wiki/Mason–Stothers_theorem

    Over fields of characteristic p > 0 it is not enough to assume that they are not all constant. For example, considered as polynomials over some field of characteristic p , the identity t p + 1 = ( t + 1) p gives an example where the maximum degree of the three polynomials ( a and b as the summands on the left hand side, and c as the right hand ...

  6. Linearised polynomial - Wikipedia

    en.wikipedia.org/wiki/Linearised_polynomial

    The map x ↦ L(x) is a linear map over any field containing F q.; The set of roots of L is an F q-vector space and is closed under the q-Frobenius map.; Conversely, if U is any F q-linear subspace of some finite field containing F q, then the polynomial that vanishes exactly on U is a linearised polynomial.

  7. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    where h is a univariate polynomial in x 0 of degree D and g 0, ..., g n are univariate polynomials in x 0 of degree less than D. Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables.

  9. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).