When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. File:Zernike polynomials3.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Zernike_polynomials3.pdf

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  3. Perfect field - Wikipedia

    en.wikipedia.org/wiki/Perfect_field

    Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field F q ( x ) {\displaystyle \mathbf {F} _{q}(x)} , since the Frobenius endomorphism sends x ↦ x p {\displaystyle x\mapsto x^{p}} and therefore is not surjective.

  4. Algebraic function field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_function_field

    The algebraic function fields over k form a category; the morphisms from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.

  5. Linearised polynomial - Wikipedia

    en.wikipedia.org/wiki/Linearised_polynomial

    The map x ↦ L(x) is a linear map over any field containing F q.; The set of roots of L is an F q-vector space and is closed under the q-Frobenius map.; Conversely, if U is any F q-linear subspace of some finite field containing F q, then the polynomial that vanishes exactly on U is a linearised polynomial.

  6. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  7. Resolvent cubic - Wikipedia

    en.wikipedia.org/wiki/Resolvent_cubic

    We can also assume without loss of generality that it is a reduced polynomial, because P(x) can be expressed as the product of two quadratic polynomials if and only if P(x − a 3 /4) can and this polynomial is a reduced one. Then R 3 (y) = y 3 + 2a 2 y 2 + (a 2 2 − 4a 0)y − a 1 2. There are two cases: If a 1 ≠ 0 then R 3 (0) = −a 1 2 < 0.

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    where h is a univariate polynomial in x 0 of degree D and g 0, ..., g n are univariate polynomials in x 0 of degree less than D. Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables.

  9. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    This is the case of the theory of polynomials over an algebraically closed field, where elimination theory may be viewed as the theory of the methods to make quantifier elimination algorithmically effective. Quantifier elimination over the reals is another example, which is fundamental in computational algebraic geometry.