Ads
related to: avalanche photodiode circuit
Search results
Results From The WOW.Com Content Network
The structure of the silicon APD. An avalanche photodiode (APD) is a highly sensitive type of photodiode, which in general are semiconductor diodes that convert light into electricity via interband excitation coupled with impact ionization.
In electronics, an avalanche diode is a diode (made from silicon or other semiconductor) that is designed to experience avalanche breakdown at a specified reverse bias voltage. The junction of an avalanche diode is designed to prevent current concentration and resulting hot spots, so that the diode is undamaged by the breakdown.
Commercial single-photon avalanche diode module for optical photons. A single-photon avalanche diode (SPAD), also called Geiger-mode avalanche photodiode [1] (G-APD or GM-APD [2]) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours.
Avalanche photodiodes are photodiodes with structure optimized for operating with high reverse bias, approaching the reverse breakdown voltage. This allows each photo-generated carrier to be multiplied by avalanche breakdown , resulting in internal gain within the photodiode, which increases the effective responsivity of the device.
If this occurs in a region of high electrical field then it can result in avalanche breakdown. This process is exploited in avalanche diodes, by which a small optical signal is amplified before entering an external electronic circuit. In an avalanche photodiode the original charge carrier is created by the absorption of a photon.
In solid-state electronics, silicon photomultipliers (SiPMs) are single-photon-sensitive devices based on pixels of single-photon avalanche diodes (SPADs) implemented on common silicon substrate. [1] The dimension of each single avalanche diode can vary from 10 to 100 micrometres , with a typical density of up to 1,000 pixels/mm 2 .
Photodiodes can be further categorized into: a. PIN Photodiodes: These photodiodes have an additional intrinsic (I) region between the P and N regions, which extends the depletion region and improves the device's performance. b. Schottky Photodiodes: In Schottky photodiodes, a metal-semiconductor junction is used instead of a PN junction.
Avalanche breakdown (or the avalanche effect) is a phenomenon that can occur in both insulating and semiconducting materials. It is a form of electric current multiplication that can allow very large currents within materials which are otherwise good insulators. It is a type of electron avalanche.