Search results
Results From The WOW.Com Content Network
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
The problems (with their original names) are: Graph isomorphism This problem is known to be in NP, but it is unknown if it is NP-complete. Subgraph homeomorphism (for a fixed graph H) Graph genus; Chordal graph completion; Chromatic index [4] Spanning tree parity problem [5] Partial order dimension; Precedence constrained 3-processor scheduling
Outerplanar graph; Random graph; Regular graph; Scale-free network; Snark (graph theory) Sparse graph. Sparse graph code; Split graph; String graph; Strongly regular graph; Threshold graph; Total graph; Tree (graph theory). Trellis (graph) Turán graph; Ultrahomogeneous graph; Vertex-transitive graph; Visibility graph. Museum guard problem ...
The "pearls" of the title include theorems, proofs, problems, and examples in graph theory.The book has ten chapters; after an introductory chapter on basic definitions, the remaining chapters material on graph coloring; Hamiltonian cycles and Euler tours; extremal graph theory; subgraph counting problems including connections to permutations, derangements, and Cayley's formula; graph ...
Resolving sets for graphs were introduced independently by Slater (1975) and Harary & Melter (1976), while the concept of a resolving set and that of metric dimension were defined much earlier in the more general context of metric spaces by Blumenthal in his monograph Theory and Applications of Distance Geometry. Graphs are special examples of ...
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
Graphs are commonly used to encode structural information in many fields, including computer vision and pattern recognition, and graph matching, i.e., identification of similarities between graphs, is an important tools in these areas. In these areas graph isomorphism problem is known as the exact graph matching. [47]
The complete list of all free trees on 2, 3, and 4 labeled vertices: = tree with 2 vertices, = trees with 3 vertices, and = trees with 4 vertices.. In combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected or directed graphs of certain types, typically as a function of the number of vertices of the ...