Search results
Results From The WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
computes absolute value of a floating-point value div ldiv lldiv: computes the quotient and remainder of integer division: fmod: remainder of the floating-point division operation remainder: signed remainder of the division operation remquo: signed remainder as well as the three last bits of the division operation fma: fused multiply-add ...
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
In the following tables, lower case letters such as a and b represent literal values, object/variable names, or l-values, as appropriate. R, S and T stand for a data type, and K for a class or enumeration type. Some operators have alternative spellings using digraphs and trigraphs or operator synonyms.
The equivalence class modulo m of an integer a is the set of all integers of the form a + k m, where k is any integer. It is called the congruence class or residue class of a modulo m, and may be denoted as (a mod m), or as a or [a] when the modulus m is known from the context.
Python and Ruby both recommend UpperCamelCase for class names, CAPITALIZED_WITH_UNDERSCORES for constants, and snake_case for other names. In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code: