Search results
Results From The WOW.Com Content Network
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
[2] arg max – argument of the maximum. arg min – argument of the minimum. arsech – inverse hyperbolic secant function. arsinh – inverse hyperbolic sine function. artanh – inverse hyperbolic tangent function. a.s. – almost surely. atan2 – inverse tangent function with two arguments. (Also written as arctan2.) A.P. – arithmetic ...
This implies that three does not divide u and that the two factors are cubes of two smaller numbers, r and s. 2u = r 3 u 2 + 3v 2 = s 3. Since u 2 + 3v 2 is odd, so is s. A crucial lemma shows that if s is odd and if it satisfies an equation s 3 = u 2 + 3v 2, then it can be written in terms of two integers e and f. s = e 2 + 3f 2. so that u = e ...
Subtract the product just obtained from the appropriate terms of the original dividend (being careful that subtracting something having a minus sign is equivalent to adding something having a plus sign), and write the result underneath (x 3 − 2x 2) − (x 3 − 3x 2) = −2x 2 + 3x 2 = x 2 Then, "bring down" the next term from the dividend.
Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D scale where it is aligned with the left index on ...
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
In mathematical logic, a "logical expression" can refer to either terms or formulas. A term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. A first-order term is recursively constructed from constant symbols, variables, and function symbols.
Use divide and conquer to compute the product of the primes whose exponents are odd; Divide all of the exponents by two (rounding down to an integer), recursively compute the product of the prime powers with these smaller exponents, and square the result; Multiply together the results of the two previous steps