Search results
Results From The WOW.Com Content Network
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
In statistical quality control, the CUSUM (or cumulative sum control chart) is a sequential analysis technique developed by E. S. Page of the University of Cambridge. It is typically used for monitoring change detection. [1] CUSUM was announced in Biometrika, in 1954, a few years after the publication of Wald's sequential probability ratio test ...
Another term for it is partial sum. The purposes of a running total are twofold. First, it allows the total to be stated at any point in time without having to sum the entire sequence each time. Second, it can save having to record the sequence itself, if the particular numbers are not individually important.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around. var y = input[i] + c // sum + c is an approximation to the exact sum. (sum,c) = Fast2Sum(sum,y) // Next time around, the lost low part will be added to y in a fresh attempt. next i return sum
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
A distinction needs to be made between a random variable whose distribution function or density is the sum of a set of components (i.e. a mixture distribution) and a random variable whose value is the sum of the values of two or more underlying random variables, in which case the distribution is given by the convolution operator.
A random variate defined as = (() + (() ())) + with the cumulative distribution function and its inverse, a uniform random number on (,), follows the distribution truncated to the range (,). This is simply the inverse transform method for simulating random variables.