Search results
Results From The WOW.Com Content Network
In mathematics, for a function :, the image of an input value is the single output value produced by when passed . The preimage of an output value y {\displaystyle y} is the set of input values that produce y {\displaystyle y} .
In a category with all finite limits and colimits, the image is defined as the equalizer (,) of the so-called cokernel pair (,,), which is the cocartesian of a morphism with itself over its domain, which will result in a pair of morphisms ,:, on which the equalizer is taken, i.e. the first of the following diagrams is cocartesian, and the second equalizing.
This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...
In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...
In mathematics, particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the preimage of particular points in a manifold under the action of a smooth map. [1] [2]
If dealing with sheaves of sets instead of sheaves of abelian groups, the same definition applies. Similarly, if f: (X, O X) → (Y, O Y) is a morphism of ringed spaces, we obtain a direct image functor f ∗: Sh(X,O X) → Sh(Y,O Y) from the category of sheaves of O X-modules to the category of sheaves of O Y-modules.
For example, let be the function from to that sends point (,) to +. The fiber of 5 under f {\displaystyle f} are all the points on the straight line with equation a + b = 5 {\displaystyle a+b=5} . The fibers of f {\displaystyle f} are that line and all the straight lines parallel to it, which form a partition of the plane R 2 {\displaystyle ...
In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map :, the inverse image functor is a functor from the category of sheaves on Y to the category of sheaves on X.