When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    In mathematics, for a function :, the image of an input value is the single output value produced by when passed . The preimage of an output value y {\displaystyle y} is the set of input values that produce y {\displaystyle y} .

  3. Image (category theory) - Wikipedia

    en.wikipedia.org/wiki/Image_(category_theory)

    In a category with all finite limits and colimits, the image is defined as the equalizer (,) of the so-called cokernel pair (,,), which is the cocartesian of a morphism with itself over its domain, which will result in a pair of morphisms ,:, on which the equalizer is taken, i.e. the first of the following diagrams is cocartesian, and the second equalizing.

  4. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...

  5. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    In mathematics, a surjective function (also known as surjection, or onto function / ˈ ɒ n. t uː /) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : X → Y, the codomain Y is the image of the function ...

  6. Preimage theorem - Wikipedia

    en.wikipedia.org/wiki/Preimage_theorem

    In mathematics, particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the preimage of particular points in a manifold under the action of a smooth map. [1] [2]

  7. Direct image functor - Wikipedia

    en.wikipedia.org/wiki/Direct_image_functor

    If dealing with sheaves of sets instead of sheaves of abelian groups, the same definition applies. Similarly, if f: (X, O X) → (Y, O Y) is a morphism of ringed spaces, we obtain a direct image functor f ∗: Sh(X,O X) → Sh(Y,O Y) from the category of sheaves of O X-modules to the category of sheaves of O Y-modules.

  8. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    For example, let be the function from to that sends point (,) to +. The fiber of 5 under f {\displaystyle f} are all the points on the straight line with equation a + b = 5 {\displaystyle a+b=5} . The fibers of f {\displaystyle f} are that line and all the straight lines parallel to it, which form a partition of the plane R 2 {\displaystyle ...

  9. Inverse image functor - Wikipedia

    en.wikipedia.org/wiki/Inverse_image_functor

    In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map :, the inverse image functor is a functor from the category of sheaves on Y to the category of sheaves on X.