Search results
Results From The WOW.Com Content Network
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
Natural convection is a flow whose motion is caused by some parts of a fluid being heavier than other parts. In most cases this leads to natural circulation: the ability of a fluid in a system to circulate continuously under gravity, with transfer of heat energy. The driving force for natural convection is gravity.
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
The convective Bénard cells are not unique and will usually appear only in the surface tension driven convection. In general the solutions to the Rayleigh and Pearson [ 15 ] analysis (linear theory) assuming an infinite horizontal layer gives rise to degeneracy meaning that many patterns may be obtained by the system.
The Earth is on track to experience another record-breaking summer, with temperatures soaring into the triple digits around the globe. In the U.S., over 140 million people were under extreme heat ...
describes heat transfer across a surface = Here, is the overall heat transfer coefficient, is the total heat transfer area, and is the minimum heat capacity rate. To better understand where this definition of NTU comes from, consider the following heat transfer energy balance, which is an extension of the energy balance above: