When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...

  3. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.

  4. NYT Mini Crossword Answers, Hints for Today, January 14, 2025

    www.aol.com/nyt-mini-crossword-answers-hints...

    Here are additional clues for each of the words in today's Mini Crossword. NYT Mini Across Hints 1 Across: "Vertically challenged" — HINT: It starts with the letter "S"

  5. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    At this point, the strengthening mechanism changes from dislocation-dominated strain hardening to growth softening and grain rotation. Typically, the inverse Hall-Petch effect will happens at grain size ranging from 10 nm to 30 nm and makes it hard for nanocrystalline materials to achieve a high strength.

  6. Hardening (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Hardening_(metallurgy)

    Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

  7. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.

  8. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    It is calculated using the following equation: ˙ = where is the mid-radius value and ˙ is the strain rate. The viscosity of the sample is then calculated using the following equation: η = F π R 2 ϵ ˙ {\displaystyle \eta ={\frac {F}{\pi R^{2}{\dot {\epsilon }}}}} where η {\displaystyle \eta } is the sample viscosity, and F {\displaystyle ...

  9. J-integral - Wikipedia

    en.wikipedia.org/wiki/J-integral

    The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.