Search results
Results From The WOW.Com Content Network
Hydrophobia features fully dynamic and free-flowing water. Gameplay involves the player being able to interact with the environment, and the realistic water dynamics. Rob Hewson (game designer at Blade Interactive) stated that "player versus environment is certainly a large part of the experience, the wonderful thing about water is that it is constantly affecting every area of the environment ...
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid ( liquids and gases ) with surfaces ...
In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows.
A direct numerical simulation (DNS) [1] [2] is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved.
Simulation of two fluids with different viscosities. The development of fluid animation techniques based on the Navier–Stokes equations began in 1996, when Nick Foster and Dimitris Metaxas [3] implemented solutions to 3D Navier-Stokes equations in a computer graphics context, basing their work on a scientific CFD paper by Harlow and Welch from 1965. [4]
Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.