When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Dirichlet's theorem states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d .

  3. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    This shows that there are infinitely many primes, because if there were finitely many primes the sum would reach its maximum value at the biggest prime rather than growing past every ⁠ ⁠. The growth rate of this sum is described more precisely by Mertens' second theorem. [77] For comparison, the sum

  6. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d.

  7. Landau's problems - Wikipedia

    en.wikipedia.org/wiki/Landau's_problems

    (The list of known primes of this form is A002496.) The existence of infinitely many such primes would follow as a consequence of other number-theoretic conjectures such as the Bunyakovsky conjecture and Bateman–Horn conjecture. As of 2024, this problem is open. One example of near-square primes are Fermat primes.

  8. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/lifestyle/10-hard-math-problems-even...

    When two primes have a difference of 2, they’re called twin primes. So 11 and 13 are twin primes, as are 599 and 601. Now, it's a Day 1 Number Theory fact that there are infinitely many prime ...

  9. Regular prime - Wikipedia

    en.wikipedia.org/wiki/Regular_prime

    In 1954 Carlitz gave a simple proof of the weaker result that there are in general infinitely many irregular primes. [7] Metsänkylä proved in 1971 that for any integer T > 6, there are infinitely many irregular primes not of the form mT + 1 or mT − 1, [8] and later generalized this. [9]