When.com Web Search

  1. Ad

    related to: how do you calculate shrinkage ratio of steel beam span

Search results

  1. Results From The WOW.Com Content Network
  2. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    L is the length of the support (outer) span; b is width; d is thickness; For the 4 pt bend setup, if the loading span is 1/2 of the support span (i.e. L i = 1/2 L in Fig. 4): = If the loading span is neither 1/3 nor 1/2 the support span for the 4 pt bend setup (Fig. 4): Fig. 4 - Beam under 4 point bending

  3. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection at any point, , along the span of a center loaded simply supported beam can be calculated using: [1] = for The special case of elastic deflection at the midpoint C of a beam, loaded at its center, supported by two simple supports is then given by: [ 1 ] δ C = F L 3 48 E I {\displaystyle \delta _{C}={\frac {FL^{3}}{48EI}}} where

  4. Structural load - Wikipedia

    en.wikipedia.org/wiki/Structural_load

    These load factors are, roughly, a ratio of the theoretical design strength to the maximum load expected in service. They are developed to help achieve the desired level of reliability of a structure [ 6 ] based on probabilistic studies that take into account the load's originating cause, recurrence, distribution, and static or dynamic nature.

  5. Span (engineering) - Wikipedia

    en.wikipedia.org/wiki/Span_(engineering)

    In engineering, span is the distance between two adjacent structural supports (e.g., two piers) of a structural member (e.g., a beam). Span is measured in the horizontal direction either between the faces of the supports (clear span) or between the centers of the bearing surfaces (effective span): [1] A span can be closed by a solid beam or by ...

  6. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 1: Critical stress vs slenderness ratio for steel, for E = 200 GPa, yield strength = 240 MPa.. Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle.

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress is the ratio of force over area (S = R/A, where S is the stress, R is the internal resisting force and A is the cross-sectional area). Strain is the ratio of change in length to the original length, when a given body is subjected to some external force (Strain= change in length÷the original length).

  8. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The two equations that describe the deformation of a Timoshenko beam have to be augmented with boundary conditions if they are to be solved. Four boundary conditions are needed for the problem to be well-posed. Typical boundary conditions are: Simply supported beams: The displacement is

  9. T-beam - Wikipedia

    en.wikipedia.org/wiki/T-beam

    The T-beam has a big disadvantage compared to an I-beam (with 'Ɪ' shape) because it has no bottom flange with which to deal with tensile forces, applicable for steel section. One way to make a T-beam more efficient structurally is to use an inverted T-beam with a floor slab or bridge deck joining the tops of the beams. Done properly, the slab ...