Search results
Results From The WOW.Com Content Network
When the statistical reason involved is false or misapplied, this constitutes a statistical fallacy. The consequences of such misinterpretations can be quite severe. For example, in medical science, correcting a falsehood may take decades and cost lives.
These include statistical tests: Popper is aware that observation statements are accepted with the help of statistical methods and that these involve methodological decisions. [21] When this distinction is applied to the term "falsifiability", it corresponds to a distinction between two completely different meanings of the term.
Exploring a forking decision-tree while analyzing data was at one point grouped with the multiple comparisons problem as an example of poor statistical method. However Gelman and Loken demonstrated [2] that this can happen implicitly by researchers aware of best practices who only make a single comparison and only evaluate their data once.
As with any logical fallacy, identifying that the reasoning behind an argument is flawed does not necessarily imply that the resulting conclusion is false. Statistical methods have been proposed that use correlation as the basis for hypothesis tests for causality, including the Granger causality test and convergent cross mapping.
Cherry picking, suppressing evidence, or the fallacy of incomplete evidence is the act of pointing to individual cases or data that seem to confirm a particular position while ignoring a significant portion of related and similar cases or data that may contradict that position. Cherry picking may be committed intentionally or unintentionally.
The history of scientific method considers changes in the methodology of scientific inquiry, not the history of science itself. The development of rules for scientific reasoning has not been straightforward; scientific method has been the subject of intense and recurring debate throughout the history of science, and eminent natural philosophers and scientists have argued for the primacy of ...
Meta-analysis – Statistical method that summarizes and/or integrates data from multiple sources; Multiple comparisons problem – Statistical interpretation with many tests; Myth of meritocracy – Sociological concept; Post hoc ergo propter hoc – Fallacy of assumption of causality based on sequence of events
Selection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. [1]