When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.

  3. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    The dimension of the co-kernel and the dimension of the image (the rank) add up to the dimension of the target space. For finite dimensions, this means that the dimension of the quotient space W/f(V) is the dimension of the target space minus the dimension of the image. As a simple example, consider the map f: R 2 → R 2, given by f(x, y) = (0 ...

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    If V and W are vector spaces, then the kernel of a linear transformation T: V → W is the set of vectors v ∈ V for which T(v) = 0. The kernel of a linear transformation is analogous to the null space of a matrix. If V is an inner product space, then the

  5. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This ...

  6. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of the kernel of f). [1 ...

  7. Cokernel - Wikipedia

    en.wikipedia.org/wiki/Cokernel

    The cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f . Cokernels are dual to the kernels of category theory , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel ...

  8. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    An important example is the kernel of a linear map for some fixed matrix . The kernel of this map is the subspace of vectors x {\displaystyle \mathbf {x} } such that A x = 0 {\displaystyle A\mathbf {x} =\mathbf {0} } , which is precisely the set of solutions to the system of homogeneous linear equations belonging to A {\displaystyle A} .

  9. Coimage - Wikipedia

    en.wikipedia.org/wiki/Coimage

    of the domain by the kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies. More generally, in category theory, the coimage of a morphism is the dual notion of the image of a morphism.