Search results
Results From The WOW.Com Content Network
Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.
The dimension of the co-kernel and the dimension of the image (the rank) add up to the dimension of the target space. For finite dimensions, this means that the dimension of the quotient space W/f(V) is the dimension of the target space minus the dimension of the image. As a simple example, consider the map f: R 2 → R 2, given by f(x, y) = (0 ...
If V and W are vector spaces, then the kernel of a linear transformation T: V → W is the set of vectors v ∈ V for which T(v) = 0. The kernel of a linear transformation is analogous to the null space of a matrix. If V is an inner product space, then the
An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This ...
The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of the kernel of f). [1 ...
The cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f . Cokernels are dual to the kernels of category theory , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel ...
An important example is the kernel of a linear map for some fixed matrix . The kernel of this map is the subspace of vectors x {\displaystyle \mathbf {x} } such that A x = 0 {\displaystyle A\mathbf {x} =\mathbf {0} } , which is precisely the set of solutions to the system of homogeneous linear equations belonging to A {\displaystyle A} .
of the domain by the kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies. More generally, in category theory, the coimage of a morphism is the dual notion of the image of a morphism.