Search results
Results From The WOW.Com Content Network
Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI) .
The first level (A) shows the original Kok model of the S-states cycling, the second level (B) shows the link between the electron transport (S-states advancement) and the relaxation process of the intermediate S-states ([YzSn], n=0,1,2,3) formation. Photosynthetic water splitting (or oxygen evolution) is one of the most important reactions on ...
In the Hill reaction: [92] 2 H 2 O + 2 A + (light, chloroplasts) → 2 AH 2 + O 2. A is the electron acceptor. Therefore, in light, the electron acceptor is reduced and oxygen is evolved. Samuel Ruben and Martin Kamen used radioactive isotopes to determine that the oxygen liberated in photosynthesis came from the water.
Redox reactions are chemical reactions in which electrons are transferred from a donor molecule to an acceptor molecule. The underlying force driving these reactions is the Gibbs free energy of the reactants relative to the products. If donor and acceptor (the reactants) are of higher free energy than the reaction products, the electron ...
Photons trapped by photosystem II move the system from state S 0 to S 1 to S 2 to S 3 and finally to S 4. S 4 reacts with water producing free oxygen: 2 H 2 O → O 2 + 4 H + + 4 e −. This conversion resets the catalyst to the S 0 state. The active site of the OEC consists of a cluster of manganese and calcium with the formula Mn 4 Ca 1 O x ...
All of these swelling and shrinking processes take place by massive water and ion fluxes through channels. Here, activation of the H +-ATPase leads to plasma membrane hyperpolarization and the opening of voltage sensitive potassium channels. The K + influx leads to water uptake and turgor increase in the cell. Salt and osmotolerance.
The enzyme is integrated into thylakoid membrane; the CF 1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic mechanism of the chloroplast ATP synthase are almost the same as those of the bacterial ...
The process of oxidizing two molecules of water to form an oxygen molecule requires four electrons. The water molecules that are oxidized in the manganese center are the source of the electrons that reduce the two molecules of Q to QH 2. To date, this water splitting catalytic center has not been reproduced by any man-made catalyst.