When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    However, it is hypothesized that light entering a singularity would similarly have its geodesics terminated, thus making the naked singularity look like a black hole. [19] [20] [21] Disappearing event horizons exist in the Kerr metric, which is a spinning black hole in a vacuum, if the angular momentum () is high

  3. Naked singularity - Wikipedia

    en.wikipedia.org/wiki/Naked_singularity

    The parameters of the singularity are M=1, a²+Q²=2M². The singularity is viewed from its equatorial plane at θ=90° (edge on). Comparison with an extremal black hole with M=1, a²+Q²=1M². Disappearing event horizons exist in the Kerr metric, which is a spinning black hole in a vacuum.

  4. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  5. Penrose–Hawking singularity theorems - Wikipedia

    en.wikipedia.org/wiki/Penrose–Hawking...

    The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose shared half of ...

  6. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [17] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  7. Black hole information paradox - Wikipedia

    en.wikipedia.org/wiki/Black_hole_information_paradox

    The final-state proposal [66] suggests that boundary conditions must be imposed at the black-hole singularity, which, from a causal perspective, is to the future of all events in the black-hole interior. This helps reconcile black-hole evaporation with unitarity but contradicts the intuitive idea of causality and locality of time-evolution.

  8. Ring singularity - Wikipedia

    en.wikipedia.org/wiki/Ring_singularity

    An observer falling into a Kerr black hole may be able to avoid the central singularity by making clever use of the inner event horizon associated with this class of black hole. This makes it theoretically (but not likely practically) [ 2 ] possible for the Kerr black hole to act as a sort of wormhole , possibly even a traversable wormhole.

  9. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    For black holes, this manifests as Hawking radiation, and the larger question of how the black hole possesses a temperature is part of the topic of black hole thermodynamics. For accelerating particles, this manifests as the Unruh effect , which causes space around the particle to appear to be filled with matter and radiation.