When.com Web Search

  1. Ads

    related to: adenosine produces sleepiness by the cell process called the system

Search results

  1. Results From The WOW.Com Content Network
  2. Adenosine - Wikipedia

    en.wikipedia.org/wiki/Adenosine

    The administration of adenosine also reduces blood flow to coronary arteries past the occlusion. Other coronary arteries dilate when adenosine is administered while the segment past the occlusion is already maximally dilated, which is a process called coronary steal. This leads to less blood reaching the ischemic tissue, which in turn produces ...

  3. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    ATP–CP system (phosphagen system) – At maximum intensity, this system is used for up to 10–15 seconds. [5] The ATP–CP system neither uses oxygen nor produces lactic acid if oxygen is unavailable and is thus called alactic anaerobic. This is the primary system behind very short, powerful movements like a golf swing, a 100 m sprint or ...

  4. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" for intracellular energy transfer. [3]

  5. Adenosine monophosphate deaminase deficiency type 1

    en.wikipedia.org/wiki/Adenosine_monophosphate...

    Fatigue and sedation after heavy exertion can be caused by excess adenosine in the cells which signals muscle fiber to feel fatigued. In the brain, excess adenosine decreases alertness and causes sleepiness. In this way, adenosine may play a role in fatigue from MADD. [4] Recovery from over-exertion can be hours, days or even months.

  6. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Oxidative phosphorylation (UK / ɒ k ˈ s ɪ d. ə. t ɪ v /, US / ˈ ɑː k. s ɪ ˌ d eɪ. t ɪ v / [1]) or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).

  7. Purinergic signalling - Wikipedia

    en.wikipedia.org/wiki/Purinergic_signalling

    In the peripheral nervous system, Schwann cells respond to nerve stimulation and modulate the release of neurotransmitters through mechanisms involving ATP and adenosine signalling. [37] In the retina and the olfactory bulb , ATP is released by neurons to evoke transient calcium signals in several glial cells such as Muller glia and astrocytes.

  8. Mitochondrion - Wikipedia

    en.wikipedia.org/wiki/Mitochondrion

    A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]

  9. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose .