Search results
Results From The WOW.Com Content Network
Atmospheric convection is called "deep" when it extends from near the surface to above the 500 hPa level, generally stopping at the tropopause at around 200 hPa. [ citation needed ] Most atmospheric deep convection occurs in the tropics as the rising branch of the Hadley circulation and represents a strong local coupling between the surface and ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
It is a layer in which rising air can experience positive buoyancy (PBE) so that deep, moist convection (DMC) can occur. On an atmospheric sounding, it is the layer between the level of free convection (LFC) and the equilibrium level (EL). The FCL is important to a variety of convective processes and to severe thunderstorm forecasting.
Diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw); see CAPE. The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.
In most cases, when CIN exists, it covers a layer from the ground to the level of free convection (LFC). The negatively buoyant energy exerted on an air parcel is a result of the air parcel being cooler (denser) than the air which surrounds it, which causes the air parcel to accelerate downward.
The up and downdrafts of boundary layer convection is the primary way in which the atmosphere moves heat, momentum, moisture, and pollutants between the Earth's surface and the atmosphere. Thus, boundary layer convection is important in the global climate modeling, numerical weather prediction, air-quality modeling and the dynamics of numerous ...
In fluid dynamics, convective mixing is the vertical transport of a fluid and its properties. In many important ocean and atmospheric phenomena, convection is driven by density differences in the fluid, e.g. the sinking of cold, dense water in polar regions of the world's oceans; and the rising of warm, less-dense air during the formation of cumulonimbus clouds and hurricanes.
Usually, within the lower atmosphere (the troposphere) the air near the surface of the Earth is warmer than the air above it, largely because the atmosphere is heated from below as solar radiation warms the Earth's surface, which in turn then warms the layer of the atmosphere directly above it, e.g., by thermals (convective heat transfer). [3]