Search results
Results From The WOW.Com Content Network
The earliest models for electron spin imagined a rotating charged mass, but this model fails when examined in detail: the required space distribution does not match limits on the electron radius: the required rotation speed exceeds the speed of light. [4]
The atom would then be pulled toward or away from the stronger magnetic field a specific amount, depending on the value of the valence electron's spin. When the spin of the electron is + + 1 / 2 the atom moves away from the stronger field, and when the spin is − + 1 / 2 the atom moves toward it. Thus the beam of silver atoms is ...
An electron state has spin number s = 1 / 2 , consequently m s will be + 1 / 2 ("spin up") or - 1 / 2 "spin down" states. Since electron are fermions they obey the Pauli exclusion principle: each electron state must have different quantum numbers. Therefore, every orbital will be occupied with at most two electrons, one ...
This property is usually stated by referring to the electron as a spin-1/2 particle. [79] For such particles the spin magnitude is ħ / 2 , [84] while the result of the measurement of a projection of the spin on any axis can only be ± ħ / 2 . In addition to spin, the electron has an intrinsic magnetic moment along its spin axis ...
(When one considers also their spin component, one speaks of atomic spin orbitals.) A state is actually a function of the coordinates of all the electrons, so that their motion is correlated, but this is often approximated by this independent-particle model of products of single electron wave functions. [8]
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
Quantum orbital motion involves the quantum mechanical motion of rigid particles (such as electrons) about some other mass, or about themselves.In classical mechanics, an object's orbital motion is characterized by its orbital angular momentum (the angular momentum about the axis of rotation) and spin angular momentum, which is the object's angular momentum about its own center of mass.
The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital location and the holon carrying the charge, but in certain conditions they can behave as independent quasiparticles.