Ads
related to: kinetic energy worksheets with answers
Search results
Results From The WOW.Com Content Network
The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.
which illustrates the kinetic energy is in general a function of the generalized velocities, coordinates, and time if the constraints also vary with time, so T = T(q, dq/dt, t). In the case the constraints on the particles are time-independent, then all partial derivatives with respect to time are zero, and the kinetic energy is a homogeneous ...
If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The establishment of the concept of internal energy distinguishes the ...
Energy is a scalar quantity, and the mechanical energy of a system is the sum of the potential energy (which is measured by the position of the parts of the system) and the kinetic energy (which is also called the energy of motion): [1] [2] = +
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is Δ E p = 1 2 k ( r 2 − r 1 ) 2 {\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}} where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.
The second part expresses the kinetic energy of a system of particles in terms of the velocities of the individual particles and the centre of mass.. Specifically, it states that the kinetic energy of a system of particles is the sum of the kinetic energy associated to the movement of the center of mass and the kinetic energy associated to the movement of the particles relative to the center ...
The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; this average total kinetic energy is related to the temperature of the system by the equipartition theorem.