When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    A matrix B is said to be a square root of A if the matrix product BB is equal to A. [1] Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the ...

  3. Square root of a 2 by 2 matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix

    A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.

  4. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The spectral norm of a matrix is the largest singular value of , i.e., the square root of the largest eigenvalue of the matrix , where denotes the conjugate transpose of : [5] ‖ ‖ = = (). where () represents the largest singular value of matrix .

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Matrix square root. Decomposition: =, not unique in general. In the case of positive semidefinite , there is a unique positive semidefinite such that = =. ...

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A square matrix is a matrix with the same number of rows and columns. [5] An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom ...

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  8. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that: When multiplied by itself, the result is itself; All of its rows and columns are linearly independent. The principal square root of an identity matrix is itself, and this is its only positive-definite square root. However ...

  9. Talk:Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Talk:Square_root_of_a_matrix

    2 Cholesky vs square root. 5 comments. 3 Calculating the square root of a diagonizable matrix. 8 comments. 4 Unitary freedom of square roots of positive operators.