Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; ... Version 1.2 or any later version published by the Free Software Foundation; ... Proton exchange membrane electrolysis;
A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. [1]
The proton-exchange membrane is commonly made of materials such as perfluorosulfonic acid (PFSA, sold commercially as Nafion and Aquivion), which minimize gas crossover and short circuiting of the fuel cell. A disadvantage of fluor containing polymers is the fact that during production (and disposal) PFAS products are formed.
Proton exchange membrane (PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) [3] that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low ...
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
Dönitz and Erdle reported on the operation of YSZ electrolyte cells with current densities of 0.3 A cm −2 and 100% Faraday efficiency at only 1.07 V. [8] The recent study by researchers from Sweden shows that ceria-based composite electrolytes, where both proton and oxide ion conductions exist, produce high current output for fuel cell ...
It typically consists of an anode, cathode, and two ion exchange membranes. This configuration allows for efficient proton conduction and effective gas diffusion, making it suitable for various applications, including fuel cell vehicles and portable power systems. Research has shown that 5-layer MEAs can provide improved performance under ...
Solid acid fuel cells (SAFCs) are a class of fuel cells characterized by the use of a solid acid material as the electrolyte. Similar to proton exchange membrane fuel cells and solid oxide fuel cells, they extract electricity from the electrochemical conversion of hydrogen- and oxygen-containing gases, leaving only water as a byproduct.