Search results
Results From The WOW.Com Content Network
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
The Wolfram Language was part of the initial version of Mathematica in 1988. [11] Symbolic aspects of the engine make it a computer algebra system. The language can perform integration, differentiation, matrix manipulations, and solve differential equations using a set of rules.
Since Kummer's equation is second order there must be another, independent, solution. The indicial equation of the method of Frobenius tells us that the lowest power of a power series solution to the Kummer equation is either 0 or 1 − b. If we let w(z) be = then the differential equation gives
Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allows machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in ...
In the vast majority of cases, the equation to be solved when using an implicit scheme is much more complicated than a quadratic equation, and no analytical solution exists. Then one uses root-finding algorithms, such as Newton's method, to find the numerical solution. Crank-Nicolson method. With the Crank-Nicolson method
The generalization of this equation to three arbitrary regular singular points is given by Riemann's differential equation. Any second order linear differential equation with three regular singular points can be converted to the hypergeometric differential equation by a change of variables.
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated. This allows us to solve separable differential equations more conveniently, as demonstrated in the example below.