Search results
Results From The WOW.Com Content Network
Silicon crystallizes in a diamond cubic crystal structure by forming sp 3 hybrid orbitals. [48] A silicon atom has fourteen electrons. In the ground state, they are arranged in the electron configuration [Ne]3s 2 3p 2. Of these, four are valence electrons, occupying the 3s orbital and two of the 3p orbitals.
In most silicates, silicon atom occupies the center of an idealized tetrahedron whose corners are four oxygen atoms, connected to it by single covalent bonds according to the octet rule. [1] The oxygen atoms, which bears some negative charge, link to other cations (M n+). This Si-O-M-O-Si linkage is strong and rigid, which properties are ...
The number of possible isomers increases rapidly with the number of silicon atoms. The members of the series (in terms of number of silicon atoms) follow: silane, SiH 4, 1 silicon atom and 4 hydrogen atoms, analogous to methane; disilane, Si 2 H 6 or H 3 Si−SiH 3, 2 silicon atoms and 6 hydrogen atoms, analogous to ethane
Silicon tetrachloride is manufactured on a huge scale as a precursor to the production of pure silicon, silicon dioxide, and some silicon esters. [11] The silicon tetrahalides hydrolyse readily in water, unlike the carbon tetrahalides, again because of the larger size of the silicon atom rendering it more open to nucleophilic attack and the ...
A reported silicon phosphide is Si 12 P 5 (no practical applications), [89] [90] formed by annealing an amorphous Si-P alloy. The arsenic–silicon phase diagram measured at 40 Bar has two phases: SiAs and SiAs 2. [91] The antimony–silicon system comprises a single eutectic close to the melting point of Sb. [92] The bismuth system is a ...
Under some definitions, the value of the radius may depend on the atom's state and context. [1] Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group ...
A silicon–oxygen bond (Si−O bond) is a chemical bond between silicon and oxygen atoms that can be found in many inorganic and organic compounds. [1] In a silicon–oxygen bond, electrons are shared unequally between the two atoms , with oxygen taking the larger share due to its greater electronegativity .
For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...