When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    Other small Pythagorean triples such as (6, 8, 10) are not listed because they are not primitive; for instance (6, 8, 10) is a multiple of (3, 4, 5). Each of these points (with their multiples) forms a radiating line in the scatter plot to the right. Additionally, these are the remaining primitive Pythagorean triples of numbers up to 300:

  3. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    With a the shorter and b the longer legs of a triangle and c its hypotenuse, the Pythagoras family of triplets is defined by c − b = 1, the Plato family by c − b = 2, and the Fermat family by | a − b | = 1. The Stifel sequence produces all primitive triplets of the Pythagoras family, and the Ozanam sequence produces all primitive triples ...

  4. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    If any of the above matrices, say A, is applied to a triple (a, b, c) T having the Pythagorean property a 2 + b 2 = c 2 to obtain a new triple (d, e, f) T = A(a, b, c) T, this new triple is also Pythagorean.

  5. Tetractys - Wikipedia

    en.wikipedia.org/wiki/Tetractys

    The tetractys. The tetractys (Greek: τετρακτύς), or tetrad, [1] or the tetractys of the decad [2] is a triangular figure consisting of ten points arranged in four rows: one, two, three, and four points in each row, which is the geometrical representation of the fourth triangular number.

  6. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.

  7. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Draw an equilateral triangle ABC with side length 2 and with point D as the midpoint of segment BC. Draw an altitude line from A to D. Then ABD is a 30°–60°–90° triangle with hypotenuse of length 2, and base BD of length 1. The fact that the remaining leg AD has length √ 3 follows immediately from the Pythagorean theorem.

  8. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  9. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 10 describes Pythagorean triangles with a side or area that is a square or cube, connecting this problem to Fermat's Last Theorem. After a chapter on Heronian triangles , Chapter 12 returns to this theme, discussing triangles whose hypotenuse and sum of sides are squares.