When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual block in a deep residual network. Here, the residual connection skips two layers. A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs.

  3. ImageNet - Wikipedia

    en.wikipedia.org/wiki/ImageNet

    In 2021, ImageNet-1k was updated by annotating faces appearing in the 997 non-person categories. They found training models on the dataset with these faces blurred caused minimal loss in performance. [31] ImageNetV2 was a new dataset containing three test sets with 10,000 each, constructed by the same methodology as the original ImageNet. [32]

  4. File:Resnet-18 architecture.svg - Wikipedia

    en.wikipedia.org/wiki/File:Resnet-18...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...

  6. Fashion MNIST - Wikipedia

    en.wikipedia.org/wiki/Fashion_MNIST

    The Fashion MNIST dataset is a large freely available database of fashion images that is commonly used for training and testing various machine learning systems. [1] [2] Fashion-MNIST was intended to serve as a replacement for the original MNIST database for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits.

  7. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [3]Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian) on training images.

  8. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [ 15 ] [ 16 ] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.

  9. Highway network - Wikipedia

    en.wikipedia.org/wiki/Highway_network

    In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. [1] [2] [3] It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks.