Search results
Results From The WOW.Com Content Network
More generally, an impulse response is the reaction of any dynamic system in response to some external change. In both cases, the impulse response describes the reaction of the system as a function of time (or possibly as a function of some other independent variable that parameterizes the dynamic behavior of the system).
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
If the ratio of the two sample rates is (or can be approximated by) [A] [4] a fixed rational number L/M: generate an intermediate signal by inserting L − 1 zeros between each of the original samples. Low-pass filter this signal at half of the lower of the two rates. Select every M-th sample from the filtered output, to obtain the result. [5]
Some authors use this scaling, [2] while many others omit the time-scaling and the T, resulting in a low-pass filter model with a DC gain of T, and hence dependent on the units of measurement of time. Figure 4. Impulse response of zero-order hold h ZOH (t). It is identical to the rect function of Figure 1, except now scaled to have an area of 1 ...
Impulse invariance is a technique for designing discrete-time infinite-impulse-response (IIR) filters from continuous-time filters in which the impulse response of the continuous-time system is sampled to produce the impulse response of the discrete-time system.
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.
The explicit term on the right-hand side is the leading order term of a Volterra expansion for the full nonlinear response. If the system in question is highly non-linear, higher order terms in the expansion, denoted by the dots, become important and the signal transducer cannot adequately be described just by its linear response function.
A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. [ A ] A sampler is a subsystem or operation that extracts samples from a continuous signal .