Search results
Results From The WOW.Com Content Network
More generally, an impulse response is the reaction of any dynamic system in response to some external change. In both cases, the impulse response describes the reaction of the system as a function of time (or possibly as a function of some other independent variable that parameterizes the dynamic behavior of the system).
An example response of system to sine wave forcing function. Time axis in units of the time constant τ. The response damps out to become a simple sine wave. Frequency response of system vs. frequency in units of the bandwidth f 3dB. The response is normalized to a zero frequency value of unity, and drops to 1/√2 at the bandwidth.
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
Some authors use this scaling, [2] while many others omit the time-scaling and the T, resulting in a low-pass filter model with a DC gain of T, and hence dependent on the units of measurement of time. Figure 4. Impulse response of zero-order hold h ZOH (t). It is identical to the rect function of Figure 1, except now scaled to have an area of 1 ...
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.
Impulse invariance is a technique for designing discrete-time infinite-impulse-response (IIR) filters from continuous-time filters in which the impulse response of the continuous-time system is sampled to produce the impulse response of the discrete-time system.
where the h[•] sequence is the impulse response, and K is its length. x [•] represents the input sequence being downsampled. In a general purpose processor, after computing y [ n ], the easiest way to compute y [ n +1] is to advance the starting index in the x [•] array by M , and recompute the dot product.
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]