Search results
Results From The WOW.Com Content Network
Hill's cipher machine, from figure 4 of the patent. In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra.Invented by Lester S. Hill in 1929, it was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once.
Polygraphic substitution is a cipher in which a uniform substitution is performed on blocks of letters. When the length of the block is specifically known, more precise terms are used: for instance, a cipher in which pairs of letters are substituted is bigraphic.
Lester S. Hill (1891–1961) was an American mathematician and educator who was interested in applications of mathematics to communications.He received a bachelor's degree (1911) and a master's degree (1913) from Columbia College and a Ph.D. from Yale University (1926).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
For a repeating-key polyalphabetic cipher arranged into a matrix, the coincidence rate within each column will usually be highest when the width of the matrix is a multiple of the key length, and this fact can be used to determine the key length, which is the first step in cracking the system.
In cryptography, a classical cipher is a type of cipher that was used historically but for the most part, has fallen into disuse. In contrast to modern cryptographic algorithms, most classical ciphers can be practically computed and solved by hand.
Nike is taking a step in the right direction under new CEO Elliott Hill.The footwear brand posted its fiscal second quarter earnings on Thursday after market close. Its revenue of $12.35 billion ...
In cryptography, a cipher block chaining message authentication code (CBC-MAC) is a technique for constructing a message authentication code (MAC) from a block cipher.The message is encrypted with some block cipher algorithm in cipher block chaining (CBC) mode to create a chain of blocks such that each block depends on the proper encryption of the previous block.