Search results
Results From The WOW.Com Content Network
In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n.. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.
The common choice is to choose the n th root for which <, that is, the n th root that has the largest real part, and, if there are two, the one with positive imaginary part. This makes the principal n th root a continuous function in the whole complex plane, except for negative real values of the radicand .
The sum of Euler's totient function φ(x) over the first twenty integers is 128. [4] 128 can be expressed by a combination of its digits with mathematical operators, thus 128 = 2 8 − 1, making it a Friedman number in base 10. [5] A hepteract has 128 vertices. 128 is the only 3-digit number that is a 7th power (2 7).
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of 1 2 {\displaystyle {\tfrac {1}{2}}} and the cube root of a number is the same as raising the number to the power of 1 3 {\displaystyle {\tfrac {1}{3}}} .
The two square roots of a negative number are both imaginary numbers, and the square root symbol refers to the principal square root, the one with a positive imaginary part. For the definition of the principal square root of other complex numbers, see Square root § Principal square root of a complex number.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In the 1970s Askold Khovanskii developed the theory of fewnomials that generalises Descartes' rule. [4] The rule of signs can be thought of as stating that the number of real roots of a polynomial is dependent on the polynomial's complexity, and that this complexity is proportional to the number of monomials it has, not its degree.