Search results
Results From The WOW.Com Content Network
Cooperative game theory is a branch of game theory that deals with the study of games where players can form coalitions, cooperate with one another, and make binding agreements. The theory offers mathematical methods for analysing scenarios in which two or more players are required to make choices that will affect other players wellbeing.
It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928, [2] which is considered the starting point of game ...
In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side (RHS).
Many properties of submodular set functions can be rephrased to apply to supermodular set functions. Intuitively, a supermodular function over a set of subsets demonstrates "increasing returns". This means that if each subset is assigned a real number that corresponds to its value, the value of a subset will always be less than the value of a ...
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games.A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed). [1]
The properties of several types of potential games have since been studied. Games can be either ordinal or cardinal potential games. In cardinal games, the difference in individual payoffs for each player from individually changing one's strategy, other things equal, has to have the same value as the difference in values for the potential ...
The theorem is a far reaching generalization of Zermelo's theorem about the determinacy of finite games. It was proved by Donald A. Martin in 1975, and is applied in descriptive set theory to show that Borel sets in Polish spaces have regularity properties such as the perfect set property. The theorem is also known for its metamathematical ...
The Rock–paper–scissors game is based on an intransitive and antitransitive relation "x beats y". A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold.