Search results
Results From The WOW.Com Content Network
However, because short-wavelength photons carry more energy per photon, the maximum amount of photosynthesis per incident unit of energy is at a longer wavelength, around 650 nm (deep red). It has been noted that there is considerable misunderstanding over the effect of light quality on plant growth.
When Emerson exposed green plants to differing wavelengths of light, he noticed that at wavelengths of greater than 680 nm the efficiency of photosynthesis decreased abruptly despite the fact that this is a region of the spectrum where chlorophyll still absorbs light (chlorophyll is the green pigment in plants - it absorbs mainly the red and blue wavelengths from light).
Using longer wavelengths means less light energy is needed for the same number of photons and therefore for the same amount of photosynthesis. For actual sunlight, where only 45% of the light is in the photosynthetically active wavelength range, the theoretical maximum efficiency of solar energy conversion is approximately 11%.
By studying purple sulfur bacteria and green bacteria, he was the first to demonstrate that photosynthesis is a light-dependent redox reaction in which hydrogen reduces (donates its atoms as electrons and protons to) carbon dioxide. Robert Emerson discovered two light reactions by testing plant productivity using different wavelengths of light ...
At the heart of a photosystem lies the reaction center, which is an enzyme that uses light to reduce and oxidize molecules (give off and take up electrons). This reaction center is surrounded by light-harvesting complexes that enhance the absorption of light. In addition, surrounding the reaction center are pigments which will absorb light. The ...
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
It shows which wavelength of light is most effectively used in a specific chemical reaction. Some reactants are able to use specific wavelengths of light more effectively to complete their reactions. For example, chlorophyll is much more efficient at using the red and blue regions than the green region of the light spectrum to carry out ...
The PI (or photosynthesis-irradiance) curve is a graphical representation of the empirical relationship between solar irradiance and photosynthesis. A derivation of the Michaelis–Menten curve, it shows the generally positive correlation between light intensity and photosynthetic rate. It is a plot of photosynthetic rate as a function of light ...