Search results
Results From The WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
A solid angle of one steradian subtends a cone aperture of approximately 1.144 radians or 65.54 degrees. In the SI, solid angle is considered to be a dimensionless quantity, the ratio of the area projected onto a surrounding sphere and the square of the sphere's radius. This is the number of square radians in the solid angle.
The sign of the square root needs to be chosen properly—note that if 2 π is added to θ, the quantities inside the square roots are unchanged, but the left-hand-sides of the equations change sign. Therefore, the correct sign to use depends on the value of θ.
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
Six squares can tile the sphere with 3 squares around each vertex and 120-degree internal angles. This is called a spherical cube. The Schläfli symbol is {4,3}. Squares can tile the hyperbolic plane with 5 around each vertex, with each square having 72-degree internal angles. The Schläfli symbol is . In fact, for any n ≥ 5 there is a ...
Just as degrees are used to measure parts of a circle, square degrees are used to measure parts of a sphere. Analogous to one degree being equal to π / 180 radians, a square degree is equal to ( π / 180 ) 2 steradians (sr), or about 1 / 3283 sr or about 3.046 × 10 −4 sr.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Ratio of a circle's circumference to its radius. Equal to : 1900 to 1600 BCE [2] Square root of 2, Pythagoras constant [4] 1.41421 35623 73095 04880 [Mw 2] [OEIS 3] Positive root of = 1800 to 1600 BCE [5] Square root of 3, Theodorus' constant [6]