Search results
Results From The WOW.Com Content Network
An axon can divide into many branches called telodendria (Greek for 'end of tree'). At the end of each telodendron is an axon terminal (also called a terminal bouton or synaptic bouton, or end-foot). [20] Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections ...
The corpus callosum is the largest commissural tract in the human brain. It consists of about 200–300 million axons that connect the two cerebral hemispheres. The corpus callosum is essential to the communication between the two hemispheres.
Association fibers are axons (nerve fibers) that connect cortical areas within the same cerebral hemisphere. [1]In human neuroanatomy, axons within the brain, can be categorized on the basis of their course and connections as association fibers, projection fibers, and commissural fibers. [1]
Myelin's best known function is to increase the rate at which information, encoded as electrical charges, passes along the axon's length. Myelin achieves this by eliciting saltatory conduction. [1] Saltatory conduction refers to the fact that electrical impulses 'jump' along the axon, over long myelin sheaths, from one node of Ranvier to the next.
The axon leaves the soma at a swelling called the axon hillock and travels for as far as 1 meter in humans or more in other species. It branches but usually maintains a constant diameter. At the farthest tip of the axon's branches are axon terminals, where the neuron can transmit a signal across the synapse to another cell. Neurons may lack ...
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. [1] In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm. [2]
For example, a specific muscle fiber called an intrafusal muscle fiber is a type of afferent neuron that lies parallel to the extrafusal muscle fibers thus functions as a stretch receptor by detecting muscle length. [2] All of these sensations travel along the same general pathways towards the brain.