Search results
Results From The WOW.Com Content Network
The use of input data that extend beyond the boundaries of the logical DCT-IV causes the data to be aliased in the same way that frequencies beyond the Nyquist frequency are aliased to lower frequencies, except that this aliasing occurs in the time domain instead of the frequency domain: we cannot distinguish the contributions of a and of b R ...
Aliasing can occur in any language that can refer to one location in memory with more than one name (for example, with pointers).This is a common problem with functions that accept pointer arguments, and their tolerance (or the lack thereof) for aliasing must be carefully documented, particularly for functions that perform complex manipulations on memory areas passed to them.
Recall that decimation of sampled data in one domain (time or frequency) produces overlap (sometimes known as aliasing) in the other, and vice versa. Compared to an L {\displaystyle L} -length DFT, the s N {\displaystyle s_{_{N}}} summation/overlap causes decimation in frequency, [ 1 ] : p.558 leaving only DTFT samples least affected by ...
Aliasing that occurs in signals sampled in time, for instance in digital audio or the stroboscopic effect, is referred to as temporal aliasing. Aliasing in spatially sampled signals (e.g., moiré patterns in digital images ) is referred to as spatial aliasing .
The 2D Z-transform, similar to the Z-transform, is used in multidimensional signal processing to relate a two-dimensional discrete-time signal to the complex frequency domain in which the 2D surface in 4D space that the Fourier transform lies on is known as the unit surface or unit bicircle.
Time-domain aliasing cancellation, the underlying principle of the modified discrete cosine transform (MDCT) Tycho Data Analysis Consortium, that worked on the Hipparcos spacecraft astrometry data Topics referred to by the same term
Instead of using zero padding to prevent time-domain aliasing like its overlap-add counterpart, overlap-save simply discards all points of aliasing, and saves the previous data in one block to be copied into the convolution for the next block. In one dimension, the performance and storage metric differences between the two methods is minimal.
Thus in order to ensure perfect recovery of the continuous signal, there must be zero overlap multidimensional sampling of the replicated regions in the transformed domain. As in the case of 1-dimensional signals, aliasing can be prevented if the continuous time signal is sampled at an adequate sufficiently high rate.