Search results
Results From The WOW.Com Content Network
A sea state is characterized by statistics, including the wave height, period, and spectrum. The sea state varies with time, as the wind and swell conditions change. The sea state can be assessed either by an experienced observer (like a trained mariner) or by using instruments like weather buoys, wave radar or remote sensing satellites.
The height of the wave was reported to be abnormally high with respect to the sea state at the time of the incident. [58] In March 2014, a massive wave struck Roi-Namur in Kwajalein Atoll in the Marshall Islands on an otherwise calm, sunny day, penetrating well inland, flooding parts of the island and swamping coastal roads. [59]
Depending on context, wave height may be defined in different ways: For a sine wave, the wave height H is twice the amplitude (i.e., the peak-to-peak amplitude): [1] =.; For a periodic wave, it is simply the difference between the maximum and minimum of the surface elevation z = η(x – c p t): [1] = {()} {()}, with c p the phase speed (or propagation speed) of the wave.
Significant wave height H 1/3, or H s or H sig, as determined in the time domain, directly from the time series of the surface elevation, is defined as the average height of that one-third of the N measured waves having the greatest heights: [5] / = = where H m represents the individual wave heights, sorted into descending order of height as m increases from 1 to N.
For the next few hours, one wave after another reached heights of between 60 and 70 feet. “Everything,” Clark, 68, says, “just came together in this perfect synergy of energy when it hit the ...
The National Weather Service reported “significant wave heights” off the coast of San Luis Obispo on Thursday morning, with a buoy outside of Morro Bay recording wave heights of 23 feet at 17 ...
The result is an accurate representation of the propagating incident wave field that will force ship motions over a 2-3 minute window. The wave processing algorithms also enable real-time calculation of wave field two-dimensional power spectra and significant wave height similar to that provided by a wave buoy.
In fluid dynamics, wind wave modeling describes the effort to depict the sea state and predict the evolution of the energy of wind waves using numerical techniques.These simulations consider atmospheric wind forcing, nonlinear wave interactions, and frictional dissipation, and they output statistics describing wave heights, periods, and propagation directions for regional seas or global oceans.