Search results
Results From The WOW.Com Content Network
Euclid defines a ratio as between two quantities of the same type, so by this definition the ratios of two lengths or of two areas are defined, but not the ratio of a length and an area. Definition 4 makes this more rigorous. It states that a ratio of two quantities exists, when there is a multiple of each that exceeds the other.
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Some types of normalization involve only a rescaling, to arrive at values relative to some size variable. In terms of levels of measurement, such ratios only make sense for ratio measurements (where ratios of measurements are meaningful), not interval measurements (where only distances are meaningful, but not ratios).
The ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
Data compression ratio, also known as compression power, is a measurement of the relative reduction in size of data representation produced by a data compression algorithm. It is typically expressed as the division of uncompressed size by compressed size.
In general, John Aitchison defined compositional data to be proportions of some whole in 1982. [1] In particular, a compositional data point (or composition for short) can be represented by a real vector with positive components. The sample space of compositional data is a simplex: = {= [,, …,] | >, =,, …,; = =}.
However, if the data is numerical in nature (ordinal or interval/ratio) then the mode, median, or mean can all be used to describe the data. Using more than one of these measures provides a more accurate descriptive summary of central tendency for the univariate.