Search results
Results From The WOW.Com Content Network
Here, a strong Lewis acid is required to generate either a carbocation from an alkyl halide in the Friedel-Crafts alkylation reaction or an acylium ion from an acyl halide. In the vast majority of cases, reactions that involve leaving group activation generate a cation in a separate step, before either nucleophilic attack or elimination.
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases. Nucleophilic describes the affinity of a nucleophile to bond with positively charged ...
An application of HSAB theory is the so-called Kornblum's rule (after Nathan Kornblum) which states that in reactions with ambident nucleophiles (nucleophiles that can attack from two or more places), the more electronegative atom reacts when the reaction mechanism is S N 1 and the less electronegative one in a S N 2 reaction.
The methoxide anion, for example, is both a strong base and nucleophile because it is a methyl nucleophile, and is thus very much unhindered. tert -Butoxide , on the other hand, is a strong base, but a poor nucleophile, because of its three methyl groups hindering its approach to the carbon.
The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide , R-Br under basic conditions, where the attacking nucleophile is hydroxyl ( OH − ) and the leaving group is bromide ( Br − ).
The phenoxide anion (aka phenolate) is a strong nucleophile with a comparable to the one of carbanions or tertiary amines. [3] Generally, oxygen attack of phenoxide anions is kinetically favored, while carbon-attack is thermodynamically preferred (see Thermodynamic versus kinetic reaction control). Mixed oxygen/carbon attack and by this a loss ...
Diisopropylamine is a common amine nucleophile in organic synthesis. [4] Because it is bulky, it is a more selective nucleophile than other similar amines, such as dimethylamine. [5] It reacts with organolithium reagents to give lithium diisopropylamide (LDA). LDA is a strong, non-nucleophilic base [6]
A Lewis base is often a Brønsted–Lowry base as it can donate a pair of electrons to H +; [11] the proton is a Lewis acid as it can accept a pair of electrons. The conjugate base of a Brønsted–Lowry acid is also a Lewis base as loss of H + from the acid leaves those electrons which were used for the A—H bond as a lone pair on the ...