Search results
Results From The WOW.Com Content Network
One approach to estimating the covariance matrix is to treat the estimation of each variance or pairwise covariance separately, and to use all the observations for which both variables have valid values. Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many ...
=, where is a lower triangular matrix obtained by a Cholesky decomposition of such that = ′, where is the covariance matrix of the errors Φ i = J A i J ′ , {\displaystyle \Phi _{i}=JA^{i}J',} where J = [ I k 0 … 0 ] , {\displaystyle J={\begin{bmatrix}\mathbf {I} _{k}&0&\dots &0\end{bmatrix}},} so that J {\displaystyle J} is a k ...
In multivariate statistics and probability theory, the scatter matrix is a statistic that is used to make estimates of the covariance matrix, for instance of the multivariate normal distribution. Definition
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices.If we have two vectors X = (X 1, ..., X n) and Y = (Y 1, ..., Y m) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y that have a maximum ...
In statistics, the coefficient of multiple correlation is a measure of how well a given variable can be predicted using a linear function of a set of other variables. It is the correlation between the variable's values and the best predictions that can be computed linearly from the predictive variables. [1]
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.