Search results
Results From The WOW.Com Content Network
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12.
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
Find a closed formula for a sequence given in a recurrence relation, for example, Fibonacci numbers. Find recurrence relations for sequences—the form of a generating function may suggest a recurrence formula. Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves ...
In mathematics, the Perrin numbers are a doubly infinite constant-recursive integer sequence with characteristic equation x 3 = x + 1. The Perrin numbers, named after the French engineer Raoul Perrin [ fr ] , bear the same relationship to the Padovan sequence as the Lucas numbers do to the Fibonacci sequence .
The triangular array whose right-hand diagonal sequence consists of Bell numbers. The Bell numbers can easily be calculated by creating the so-called Bell triangle, also called Aitken's array or the Peirce triangle after Alexander Aitken and Charles Sanders Peirce. [6] Start with the number one. Put this on a row by itself. (, =)
The Padovan sequence numbers can be written in terms of powers of the roots of the equation [1] = This equation has 3 roots; one real root p (known as the plastic ratio) and two complex conjugate roots q and r. [5] Given these three roots, the Padovan sequence can be expressed by a formula involving p, q and r :