Search results
Results From The WOW.Com Content Network
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
1 maxwell = 1 gauss × 2. That is, one maxwell is the total flux across a surface of one square centimetre perpendicular to a magnetic field of strength one gauss. The weber is the related SI unit of magnetic flux, which was defined in 1946. [9] 1 maxwell ≘ 10 −4 tesla × (10 −2 metre) 2 = 10 −8 weber
It is usually taken by students during the final two years of Senior secondary school (Grade 10 & 11 (usually ages 15–16)) or external (non-school) candidate. The exam is usually held in December. The exams are held in three mediums Sinhala , Tamil and English .
In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations. In most older literature, B is called the magnetic flux density or magnetic induction.
The net magnetic flux Φ B is the surface integral of the magnetic field B passing through a fixed surface, Σ: =, The net electric flux Φ E is the surface integral of the electric field E passing through Σ : Φ E = ∬ Σ E ⋅ d S , {\displaystyle \Phi _{E}=\iint _{\Sigma }\mathbf {E} \cdot \mathrm {d} \mathbf {S} ,}
In physics, the weber (/ ˈ v eɪ b-, ˈ w ɛ b. ər / VAY-, WEH-bər; [1] [2] symbol: Wb) is the unit of magnetic flux in the International System of Units (SI). The unit is derived (through Faraday's law of induction) from the relationship 1 Wb = 1 V⋅s (volt-second). A magnetic flux density of 1 Wb/m 2 (one weber per square metre) is one tesla.
The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that emf (electromagnetic work done on a unit charge when ...
[8] [7]: 25 The connection between the fluid and magnetic field fixes the topology of the magnetic field in the fluid—for example, if a set of magnetic field lines are tied into a knot, then they will remain so as long as the fluid has negligible resistivity. This difficulty in reconnecting magnetic field lines makes it possible to store ...