Search results
Results From The WOW.Com Content Network
A diode-connected transistor is a method of creating a two-terminal rectifying device (a diode) out of a three-terminal transistor. A characteristic of diode-connected transistors is that they are always in the saturation region for metal–oxide–semiconductor field-effect transistors (MOSFETs) and junction-gate field-effect transistors ...
If the MOSFET is an n-channel or nMOS FET, then the source and drain are n+ regions and the body is a p region. If the MOSFET is a p-channel or pMOS FET, then the source and drain are p+ regions and the body is a n region. The source is so named because it is the source of the charge carriers (electrons for n-channel, holes for p-channel) that ...
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.
Today, most diodes are made of silicon, but other semiconducting materials such as gallium arsenide and germanium are also used. [6] The obsolete thermionic diode is a vacuum tube with two electrodes, a heated cathode and a plate, in which electrons can flow in only one direction, from the cathode to the plate.
A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices , such as an insulated-gate bipolar transistor (IGBT) or a thyristor , its main advantages are high switching speed and good efficiency at low voltages.
The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.
The MOSFET is also capable of handling higher power than the JFET. [35] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. [6] The MOSFET thus became the most common type of transistor in computers, electronics, [36] and communications technology (such as smartphones). [37]
Diode–transistor logic (DTL) was used in the IBM 608 which was the first all-transistorized computer. Early transistorized computers were implemented using discrete transistors, resistors, diodes and capacitors. The first diode–transistor logic family of integrated circuits was introduced by Signetics in 1962.