When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The energy required to accelerate a 1 kg mass at 1 m/s 2 through a distance of 1 m. The kinetic energy of a 2 kg mass travelling at 1 m/s, or a 1 kg mass travelling at 1.41 m/s. The energy required to lift an apple up 1 m, assuming the apple has a mass of 101.97 g. The heat required to raise the temperature of 0.239 g of water from 0 °C to 1 ...

  3. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per kilogram: J/(kg⋅°C). Sometimes the gram is used instead of kilogram for the unit of mass: 1 J⋅g −1 ⋅K −1 = 1000 J⋅kg −1 ⋅K −1.

  4. Joule heating - Wikipedia

    en.wikipedia.org/wiki/Joule_heating

    Joule immersed a length of wire in a fixed mass of water and measured the temperature rise due to a known current flowing through the wire for a 30 minute period. By varying the current and the length of the wire he deduced that the heat produced was proportional to the square of the current multiplied by the electrical resistance of the ...

  5. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...

  6. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  7. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Specific energy is an intensive property, whereas energy and mass are extensive properties. The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W

  8. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1] It is defined to serve as an intensive property.

  9. Units of energy - Wikipedia

    en.wikipedia.org/wiki/Units_of_energy

    The calorie is defined as the amount of thermal energy necessary to raise the temperature of one gram of water by 1 Celsius degree, from a temperature of 14.5 °C, at a pressure of 1 atm. For thermochemistry a calorie of 4.184 J is used, but other calories have also been defined, such as the International Steam Table calorie of 4.1868 J.