Search results
Results From The WOW.Com Content Network
14,179: the number of digits is odd (5) → 417 − 1 − 9 = 407: 0 − 4 − 7 = −11 = −1 × 11. 12: It is divisible by 3 and by 4. [6] 324: it is divisible by 3 and by 4. Subtract the last digit from twice the rest. The result must be divisible by 12. 324: 32 × 2 − 4 = 60 = 5 × 12. 13: Form the alternating sum of blocks of three from ...
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Then the triangle is in Euclidean space if the sum of the reciprocals of p, q, and r equals 1, spherical space if that sum is greater than 1, and hyperbolic space if the sum is less than 1. A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270.
The digit sum of 2946, for example is 2 + 9 + 4 + 6 = 21. Since 21 = 2946 − 325 × 9, the effect of taking the digit sum of 2946 is to "cast out" 325 lots of 9 from it. If the digit 9 is ignored when summing the digits, the effect is to "cast out" one more 9 to give the result 12.
In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...
An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...
For instance, the first counterexample must be odd because f(2n) = n, smaller than 2n; and it must be 3 mod 4 because f 2 (4n + 1) = 3n + 1, smaller than 4n + 1. For each starting value a which is not a counterexample to the Collatz conjecture, there is a k for which such an inequality holds, so checking the Collatz conjecture for one starting ...
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division: