Search results
Results From The WOW.Com Content Network
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Then the triangle is in Euclidean space if the sum of the reciprocals of p, q, and r equals 1, spherical space if that sum is greater than 1, and hyperbolic space if the sum is less than 1. A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270.
The digit sum of 2946, for example is 2 + 9 + 4 + 6 = 21. Since 21 = 2946 − 325 × 9, the effect of taking the digit sum of 2946 is to "cast out" 325 lots of 9 from it. If the digit 9 is ignored when summing the digits, the effect is to "cast out" one more 9 to give the result 12.
In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...
less than 10 5 is 77 031, which has 350 steps, less than 10 6 is 837 799, which has 524 steps, less than 10 7 is 8 400 511, which has 685 steps, less than 10 8 is 63 728 127, which has 949 steps, less than 10 9 is 670 617 279, which has 986 steps, less than 10 10 is 9 780 657 630, which has 1132 steps, [10] less than 10 11 is 75 128 138 247 ...
) is called superincreasing if every element of the sequence is greater than the sum of all previous elements in the sequence. [1] [2] Formally, this condition can be written as + > = for all n ≥ 1.
An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...